
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

The past year has seen several new features implemented within MACSio. As always, new 
features are added with two contradictory goals in mind. The objective of increasing flexibility is 
sometimes at odds with maintaining simplicity and general application emulation.

Improvements to Mesh Structure
The data within real physics applications is dynamic. Both during initial problem set-up and 
throughout execution. Current development efforts are underway to improve MACSio’s mesh 
capabilities. First, there will be support for multiple meshes and mesh types within a single run. 
Second, there will support for dataset evolution during a single run. This emulates mesh-
refinement applications, where the overall size of the dataset grows throughout execution. In 
addition, work is being do to support addition data formats. MACSio will soon support generic 
JSON data, similar to that generated by other LLNL software tools

Compute Workload
MACSio now has 4 options for emulating a compute workload. First, as before, there is the option 
for no compute work done between I/O phases. Next, there is a basic sleep option, where 
MACSio is idle for a given time period. Third, is the option for each process to compute random 
floating point operations. Finally, there is the option for MACSio to perform a parallel solve 
operation, similar to ones in compute benchmarks.

Open Source on GitHub
MACSio is currently under active development. It is available at https://github.com/llnl/macsio. 
Several development efforts are underway and we welcome contributions from others in the 
community. 

Current efforts include implementing a number of software engineering best practices. These 
include several efforts to increase the ease of building MACSio and software libraries required for 
the various plugins. Work is underway to convert the build system to CMake and to create a 
Spack package. MACSio currently supports Doxygen documentation, but additional resources 
(such as a getting started guide) are being developed.

Publication

This paper uses Darshan I/O characterization and the MACSio proxy application to replicate five 
production workloads, showing how these can be used effectively to investigate I/O performance 
when migrating between HPC systems ranging from small local clusters to leadership scale 
machines. Preliminary results indicate that it is possible to generate datasets that match the 
target application with a good degree of accuracy. This enables a predictive performance 
analysis study of a representative workload to be conducted on five different systems. The results 
of this analysis are used to identify how workloads exhibit different I/O footprints on a file system 
and what effect file system configuration can have on performance. 

Proxy applications are a vital resource for evaluating and preparing for new systems and 
hardware. A proxy application for I/O workloads will be essential as new storage tiers and vendor 
solutions are being developed and deployed.

MACSio is a multi-purpose, application-centric, scalable I/O proxy application designed to 
imitate a variety of multi-physics applications. Using a plug-in structure, it operates at the same 
level of abstraction as real applications. That is, MACSio can utilize a wide selection of the I/O 
software stack. It also implements a variety of multi-physics code features to closely mimic the 
way in which data flows in-to and out-of these applications.

This poster describes the architecture of the MACSio proxy application and the various 
development efforts in the project throughout the last year. These development efforts include 
new features for manipulating dataset meshes and basic compute workload implementations.

In addition to feature developments, an effort is underway to validate and quantify MACSio’s
approximation to a given multi-physics application. This effort includes the development of an 
I/O tracing tool, a tool for analyzing the resultant traces, and a formula to quantify the similarity 
between two such traces.

MACSio Development and Proxy Application Validation
Elsa Gonsiorowski, James Dickson, Mark Miller

Lawrence Livermore National Laboratory, Livermore, CA, USA

MACSio Architecture

MACSio Architecture New Features

Conclusion

LLNL-POST- 737158

Abstract

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and partially funded by the Laboratory Directed Research and Development Program at LLNL under tracking code 12-ERD-005.

DOE COE Performance Portability Meeting
Denver, CO   August 22–24, 2017

Related Work

Validation Process
Run production code with I/O tracing

Extract parameters to describe dataset and 
execution pattern

Emulate the application using MACSio while 
collecting an I/O trace

Verify the dataset similarity and compare traces

Run MACSio on new platforms, with new 
libraries, and/or using different I/O strategies

Data Generation

I/O Patterns

MACSio generates data that is marshaled for I/O performance testing. The generated data is 
parameterized, distributed 1D, 2D, or 3D meshes (structured or unstructured) and arrays. 
Parameterizations include:
- Nominal and optionally randomization of mesh/array part counts per rank/core
- A few choices in how mesh/array parts are distributed in parallel including nicely structured 

distributions as well as fully unstructured distributions and distributions that utilize only a 
subset of all cores/ranks.

- Nominal and optionally randomization of mesh/array part sizes (in terms of numbers of zones 
of mesh or array entries)

- The number, type (char, int, float) and kind (nodal/zonal) of variables (mesh or arrays)
- Choice in algorithm used to fill variable buffers with data (e.g., constant, random/chaotic, 

sinusoidal, Poison distributed, etc.)
- Depth and breadth with optional randomization of auxiliary metadata hierarchies (such as 

might be seen in material models or various other rich metadata produced by multi-physics 
codes)

- Frequency of main mesh/array dump writes, reads or both as well as being optionally 
interleaved with auxiliary data dumps.

The data MACSio generates will be housed in a JSON-like object tree that is handed off to 
plugins for dump writes and received from plugins on dump reads. This tree will include 
information essential for plugins to determine parallel distribution of the main data objects.

SSF: Single Shared File
In the SSF paradigm, parallelism is achieved through concurrent access to a single, shared file 
(from the perspective of the application). This paradigm is sometimes also called N->1 because it 
is N tasks writing to one, single file. In this paradigm I/O requests can be either independent or 
collective. However, collective requests are seen as being somewhat unique to the SSF paradigm 
as well as potentially offering the greatest opportunity for high performance. On the other hand, 
there are some subtleties regarding what collective I/O operations truly mean in the SSF. SSF 
requires a parallel interface at the filesystem level (e.g. Lustre, GPFS, or PLFS).

In some descriptions, the SSF paradigm is further divided into segmented and strided access 
patterns. These access patterns have to do with the granularity at which data from different tasks 
intermingles in the file address space. In segmented SSF, large swaths of the file address space 
tend to be read/written by a single task. In strided SSF, data from many/all tasks tends to co-
mingle even in very fine grained swaths.

MIF: Multiple Independent File
In the MIF paradigm, parallelism is achieved through simultaneous access to multiple files. The 
application divides itself into file groups. For each file group, the application manages exclusive 
access among all the tasks of the group. I/O is serial within groups but parallel across groups. 
The number of files (groups) is wholly independent from the number of processors and is often 
chosen to match the number of independent I/O pathways available in the hardware between the 
compute nodes and the filesystem. This paradigm is sometimes also called N->M because it is N 
tasks writing to M files (M<N).

In this paradigm I/O requests are almost exclusively independent. However, there are scenarios 
where collective I/O requests can be made to work and might even make sense in the MIF 
paradigm. The onus is on the application to manage the distribution of data across potentially 
many files. In truth, this illuminates the only salient distinction between SSF and MIF. In either 
paradigm, if you dig deep enough into the I/O stack, you soon discover that data is always being 
distributed across multiple files. The only difference is whether that physical arrangement of data 
is hidden from the application by some sort of higher level abstraction (e.g. a parallel filesystem) 
or explicitly managed by the application (and thereby also exposed to the filesystem).

FPP: File Per Process
The file per processor paradigm is just a special case of MIF where the number of files is equal to 
the number of processors. This paradigm is sometimes called N->N because it is N tasks writing 
to N files. FPP paradigms typically also include a throttle to govern the number of files that are 
being accessed at any one time to avoid overloading the underlying storage systems 
components.

Function MACSio Application
DBOpenReal 9 9

DBPutUcdMesh 9 9

DBPutZonelist2 9 9

DBPutUcdvar 414 395

DBPutUcdvar1 414 395

DBClose 9 9

DBWrite 0 302

Initial Results
An initial implementation of a tracer was used 
to profile an example problem of a real physics 
application. A MACSio run was then designed 
to emulate the example problem. This run was 
also traced. A tally of the SILO library function 
calls can be seen in the table at right.

As a basic comparison, MACSio was able to 
create the same number of files, with an 
accuracy of 99.5% in terms of bytes written to 
file. Work remains to be done to:
- Create a tool for analyzing traces
- Create a standard for evaluating the similarity 

between two traces

Dickson, James, Wright, Steven A., Maheswaran, Satheesh, Herdman, J. A., Harris, Duncan, 
Miller, Mark C. and Jarvis, Stephen A. (2017) Enabling portable I/O analysis of commercially 
sensitive HPC applications through workload replication. In: Cray User Group 2017, 
Redmond, California, USA, 7-12 May 2017.Published in: Cray User Group 2017 Proceedings 
(CUG2017 Proceedings) pp. 1-14.

Available Plugins

SILO HDF5MPI IOTyponIO ADIOS

A key design feature of MACSio is the use of a dynamic, run-time plugin architecture. This design 
defines how high-level data generated within MACSio is delivered to I/O plugins and will enable 
plugin developers the greatest flexibility in deciding how best to handle data marshaled by 
MACSio. MACSio currently implements plugins for a number of I/O software libraries. Thus, 
MACSio is able to operate at the same level-of-abstraction as the applications it approximates.

Currently MACSio includes plugins for SILO (LLNL), HDF5, TyponIO (UK Mini-App Consortium), 
and MPI IO. Development of an ADIOS plugin is underway.

Understanding the ways in MACSio is similar or different to a give multi-physics application 
requires quantifying the approximation. This includes evaluating the similarities between the 
resulting dataset (both in terms of size and number of files) as well as evaluating the I/O 
operations which occur during execution. Through this understanding, application developers will 
be able to relate the performance of MACSio on new hardware or using a different I/O software 
stack to the target application. The performance of new I/O approaches can be evaluated quickly 
and without change to origin application. 

With new computer architectures becoming available, the need for MACSio is apparent. While 
many development efforts are focused on GPUs, MACSio can be used to understand how I/O 
performance is affected. This requires no domain knowledge from the multi-physics application 
community.

New MACSio features improve the quality of workload emulation, both in terms of data I/O as well 
as compute operations. These features improve dataset emulation and increase accuracy 
throughout an execution.

It is essential that MACSio performance is validated and quantified for a given multi-physics 
application. With a validated MACSio, we hope that it will be seen as tool for evaluating new 
hardware, software, and I/O strategies. It can then be used to guide application development and 
improve performance of I/O operations.


